extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C52).1C22 = C22⋊Dic26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).1C2^2 | 416,99 |
(C2×C52).2C22 = C23.D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).2C2^2 | 416,100 |
(C2×C52).3C22 = C22.D52 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).3C2^2 | 416,107 |
(C2×C52).4C22 = C52⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).4C2^2 | 416,109 |
(C2×C52).5C22 = C4⋊2D52 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).5C2^2 | 416,116 |
(C2×C52).6C22 = D26⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).6C2^2 | 416,118 |
(C2×C52).7C22 = C4⋊C4⋊D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).7C2^2 | 416,119 |
(C2×C52).8C22 = C26.D8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).8C2^2 | 416,14 |
(C2×C52).9C22 = C52.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).9C2^2 | 416,15 |
(C2×C52).10C22 = D52⋊6C4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).10C2^2 | 416,16 |
(C2×C52).11C22 = C26.Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).11C2^2 | 416,17 |
(C2×C52).12C22 = C52.53D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).12C2^2 | 416,29 |
(C2×C52).13C22 = C52.46D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4+ | (C2xC52).13C2^2 | 416,30 |
(C2×C52).14C22 = C4.12D52 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4- | (C2xC52).14C2^2 | 416,31 |
(C2×C52).15C22 = D52⋊7C4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).15C2^2 | 416,32 |
(C2×C52).16C22 = D4⋊Dic13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).16C2^2 | 416,39 |
(C2×C52).17C22 = C52.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).17C2^2 | 416,40 |
(C2×C52).18C22 = Q8⋊Dic13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).18C2^2 | 416,42 |
(C2×C52).19C22 = C52.10D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).19C2^2 | 416,43 |
(C2×C52).20C22 = C52.56D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).20C2^2 | 416,44 |
(C2×C52).21C22 = Dic13⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).21C2^2 | 416,108 |
(C2×C52).22C22 = C4.Dic26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).22C2^2 | 416,111 |
(C2×C52).23C22 = C4⋊C4×D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).23C2^2 | 416,112 |
(C2×C52).24C22 = D52⋊8C4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).24C2^2 | 416,114 |
(C2×C52).25C22 = M4(2)×D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).25C2^2 | 416,127 |
(C2×C52).26C22 = D52.2C4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).26C2^2 | 416,128 |
(C2×C52).27C22 = C8⋊D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4+ | (C2xC52).27C2^2 | 416,129 |
(C2×C52).28C22 = C8.D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4- | (C2xC52).28C2^2 | 416,130 |
(C2×C52).29C22 = C2×D4⋊D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).29C2^2 | 416,152 |
(C2×C52).30C22 = D52⋊6C22 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).30C2^2 | 416,153 |
(C2×C52).31C22 = C2×D4.D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).31C2^2 | 416,154 |
(C2×C52).32C22 = D4×Dic13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).32C2^2 | 416,155 |
(C2×C52).33C22 = C52.17D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).33C2^2 | 416,157 |
(C2×C52).34C22 = C52⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).34C2^2 | 416,159 |
(C2×C52).35C22 = C52⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).35C2^2 | 416,161 |
(C2×C52).36C22 = C2×Q8⋊D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).36C2^2 | 416,162 |
(C2×C52).37C22 = Q8.D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).37C2^2 | 416,163 |
(C2×C52).38C22 = C2×C13⋊Q16 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).38C2^2 | 416,164 |
(C2×C52).39C22 = Q8×Dic13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).39C2^2 | 416,166 |
(C2×C52).40C22 = C52.23D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).40C2^2 | 416,168 |
(C2×C52).41C22 = D4.Dic13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).41C2^2 | 416,169 |
(C2×C52).42C22 = D4⋊D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4+ | (C2xC52).42C2^2 | 416,170 |
(C2×C52).43C22 = C52.C23 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).43C2^2 | 416,171 |
(C2×C52).44C22 = D4.9D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4- | (C2xC52).44C2^2 | 416,172 |
(C2×C52).45C22 = C2×D4⋊2D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).45C2^2 | 416,217 |
(C2×C52).46C22 = C2×Q8×D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).46C2^2 | 416,219 |
(C2×C52).47C22 = C2×D52⋊C2 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).47C2^2 | 416,220 |
(C2×C52).48C22 = Q8.10D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).48C2^2 | 416,221 |
(C2×C52).49C22 = D4.10D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4- | (C2xC52).49C2^2 | 416,224 |
(C2×C52).50C22 = C23.11D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).50C2^2 | 416,98 |
(C2×C52).51C22 = Dic13⋊4D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).51C2^2 | 416,102 |
(C2×C52).52C22 = D26.12D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).52C2^2 | 416,104 |
(C2×C52).53C22 = D26⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).53C2^2 | 416,105 |
(C2×C52).54C22 = C23.6D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).54C2^2 | 416,106 |
(C2×C52).55C22 = Dic13.Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).55C2^2 | 416,110 |
(C2×C52).56C22 = C4⋊C4⋊7D13 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).56C2^2 | 416,113 |
(C2×C52).57C22 = D26.13D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).57C2^2 | 416,115 |
(C2×C52).58C22 = D26⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).58C2^2 | 416,117 |
(C2×C52).59C22 = C13×C4.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).59C2^2 | 416,50 |
(C2×C52).60C22 = C13×C4.10D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).60C2^2 | 416,51 |
(C2×C52).61C22 = C23.18D26 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).61C2^2 | 416,156 |
(C2×C52).62C22 = Dic13⋊D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).62C2^2 | 416,160 |
(C2×C52).63C22 = Dic13⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).63C2^2 | 416,165 |
(C2×C52).64C22 = D26⋊3Q8 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).64C2^2 | 416,167 |
(C2×C52).65C22 = C13×C22.D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).65C2^2 | 416,184 |
(C2×C52).66C22 = C13×C4.4D4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).66C2^2 | 416,185 |
(C2×C52).67C22 = C13×C42.C2 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 416 | | (C2xC52).67C2^2 | 416,186 |
(C2×C52).68C22 = C13×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | | (C2xC52).68C2^2 | 416,187 |
(C2×C52).69C22 = C13×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).69C2^2 | 416,197 |
(C2×C52).70C22 = C13×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).70C2^2 | 416,198 |
(C2×C52).71C22 = C13×2- 1+4 | φ: C22/C1 → C22 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).71C2^2 | 416,232 |
(C2×C52).72C22 = C52.6Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).72C2^2 | 416,91 |
(C2×C52).73C22 = C42⋊D13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).73C2^2 | 416,93 |
(C2×C52).74C22 = C4.D52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).74C2^2 | 416,96 |
(C2×C52).75C22 = C42⋊2D13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).75C2^2 | 416,97 |
(C2×C52).76C22 = C2×C26.D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).76C2^2 | 416,144 |
(C2×C52).77C22 = C4×C13⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).77C2^2 | 416,149 |
(C2×C52).78C22 = C23.23D26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).78C2^2 | 416,150 |
(C2×C52).79C22 = C13×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).79C2^2 | 416,178 |
(C2×C52).80C22 = C52.44D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).80C2^2 | 416,23 |
(C2×C52).81C22 = C104⋊6C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).81C2^2 | 416,24 |
(C2×C52).82C22 = C104⋊5C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).82C2^2 | 416,25 |
(C2×C52).83C22 = D52⋊5C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).83C2^2 | 416,28 |
(C2×C52).84C22 = C4×Dic26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).84C2^2 | 416,89 |
(C2×C52).85C22 = C52⋊2Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).85C2^2 | 416,90 |
(C2×C52).86C22 = C4×D52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).86C2^2 | 416,94 |
(C2×C52).87C22 = C4⋊D52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).87C2^2 | 416,95 |
(C2×C52).88C22 = C2×C104⋊C2 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).88C2^2 | 416,123 |
(C2×C52).89C22 = C2×D104 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).89C2^2 | 416,124 |
(C2×C52).90C22 = C2×Dic52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).90C2^2 | 416,126 |
(C2×C52).91C22 = C52.48D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).91C2^2 | 416,145 |
(C2×C52).92C22 = C2×C52⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).92C2^2 | 416,146 |
(C2×C52).93C22 = C23.21D26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).93C2^2 | 416,147 |
(C2×C52).94C22 = C52⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).94C2^2 | 416,151 |
(C2×C52).95C22 = C22×Dic26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).95C2^2 | 416,212 |
(C2×C52).96C22 = D52⋊4C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52).96C2^2 | 416,12 |
(C2×C52).97C22 = C104.6C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).97C2^2 | 416,26 |
(C2×C52).98C22 = D52.3C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).98C2^2 | 416,122 |
(C2×C52).99C22 = D104⋊7C2 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).99C2^2 | 416,125 |
(C2×C52).100C22 = C2×C52.4C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).100C2^2 | 416,142 |
(C2×C52).101C22 = C4×C13⋊2C8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).101C2^2 | 416,9 |
(C2×C52).102C22 = C26.7C42 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).102C2^2 | 416,10 |
(C2×C52).103C22 = C52⋊3C8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).103C2^2 | 416,11 |
(C2×C52).104C22 = C8×Dic13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).104C2^2 | 416,20 |
(C2×C52).105C22 = C52.8Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).105C2^2 | 416,21 |
(C2×C52).106C22 = C104⋊8C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).106C2^2 | 416,22 |
(C2×C52).107C22 = D26⋊1C8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).107C2^2 | 416,27 |
(C2×C52).108C22 = C52.55D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).108C2^2 | 416,37 |
(C2×C52).109C22 = C42×D13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).109C2^2 | 416,92 |
(C2×C52).110C22 = C2×C8×D13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).110C2^2 | 416,120 |
(C2×C52).111C22 = C2×C8⋊D13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).111C2^2 | 416,121 |
(C2×C52).112C22 = C22×C13⋊2C8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).112C2^2 | 416,141 |
(C2×C52).113C22 = C2×C4×Dic13 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).113C2^2 | 416,143 |
(C2×C52).114C22 = C13×D4⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).114C2^2 | 416,52 |
(C2×C52).115C22 = C13×Q8⋊C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).115C2^2 | 416,53 |
(C2×C52).116C22 = C13×C4≀C2 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 104 | 2 | (C2xC52).116C2^2 | 416,54 |
(C2×C52).117C22 = C13×C4.Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).117C2^2 | 416,56 |
(C2×C52).118C22 = C13×C2.D8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).118C2^2 | 416,57 |
(C2×C52).119C22 = C13×C8.C4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).119C2^2 | 416,58 |
(C2×C52).120C22 = C4⋊C4×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).120C2^2 | 416,177 |
(C2×C52).121C22 = D4×C52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).121C2^2 | 416,179 |
(C2×C52).122C22 = Q8×C52 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).122C2^2 | 416,180 |
(C2×C52).123C22 = C13×C4⋊D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).123C2^2 | 416,182 |
(C2×C52).124C22 = C13×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).124C2^2 | 416,183 |
(C2×C52).125C22 = C13×C4⋊1D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).125C2^2 | 416,188 |
(C2×C52).126C22 = C13×C4⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).126C2^2 | 416,189 |
(C2×C52).127C22 = M4(2)×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).127C2^2 | 416,191 |
(C2×C52).128C22 = C13×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).128C2^2 | 416,192 |
(C2×C52).129C22 = D8×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).129C2^2 | 416,193 |
(C2×C52).130C22 = SD16×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).130C2^2 | 416,194 |
(C2×C52).131C22 = Q16×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).131C2^2 | 416,195 |
(C2×C52).132C22 = C13×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).132C2^2 | 416,196 |
(C2×C52).133C22 = Q8×C2×C26 | φ: C22/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).133C2^2 | 416,229 |
(C2×C52).134C22 = C13×C8⋊C4 | central extension (φ=1) | 416 | | (C2xC52).134C2^2 | 416,47 |
(C2×C52).135C22 = C13×C22⋊C8 | central extension (φ=1) | 208 | | (C2xC52).135C2^2 | 416,48 |
(C2×C52).136C22 = C13×C4⋊C8 | central extension (φ=1) | 416 | | (C2xC52).136C2^2 | 416,55 |